<name>

Class: Honors Geometry

Date: 9/14/06

Topic: Lesson 3-2 (Proving Lines Parallel)

Postulate 3-2

Converse of Corr. ∠'s Post. (Converse of Post 3-1)

If 2 lines & transv. form \cong corr. \angle 's, the 2 lines are parallel.

Theorem 3-3

Converse of Alt Int ∠'s Thm (Converse of Thm 3-1)

If 2 lines & transv. form \cong alt int \angle 's the 2 lines are parallel.

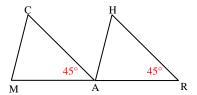
Proof: $\angle 1 \cong \angle 2$ Given

 $\angle 1 \cong \angle 5$ Vertical $\angle 's$ are \cong (Theorem 2-1)

 $\angle 2 \cong \angle 5$ Substitution POC

 $l \parallel m$ Corresponding \angle 's are \cong (Postulate 3-2)

Q.E.D.

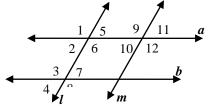

Theorem 3-4

Converse of Same-Side Int ∠'s Thm (Converse of Thm 3-2)

If 2 lines & transv. form suppl same-side int \angle 's the 2 lines are parallel.

Example

Pg 125, #2 – Which lines/segs are parallel & justify:


 \overline{MR} is transversal.

 $m\angle CAM = m\angle HRA = 45$; $\angle CAM \cong \angle HRA$ & are corr $\angle s$.

 $\overline{CA} \parallel \overline{HR} \text{ (Post 3-2)}$

Example

Pg. 125, #4-14 even

- 4. $\angle 2$, $\angle 3$ suppl $a \parallel b$; conv same-side int $\angle s$ thm
- 6. ∠4, ∠8 suppl none; adj suppl angles not sufficient
- 8. $\angle 1 \cong \angle 3 a \parallel b$; conv of corr $\angle 's$ post.
- 10. $\angle 3 \cong \angle 6 a \parallel b$; conv of alt int $\angle s$ theorem
- 12. $\angle 1 \cong \angle 6$ none; vert $\angle s$ not sufficient
- 14. $\angle 11 \cong \angle 7$ none; would have to assume lines are parallel

<name>

Class: Honors Geometry

Date: 9/14/06

Topic: Lesson 3-2 (Proving Lines Parallel)

Theorem 3-5

If 2 lines parallel to same line, they're parallel to each other.

Theorem 3-6

In a plane, if 2 lines \perp to same line, they parallel to ea other.

Proof:
$$m \perp l$$
, $n \perp l$ Given

Corr $\angle 's$ both rt $\angle 's$ Defn perpendicular

Corr $\angle 's$ are \cong Thm 2-4 (all rt $\angle 's \cong)$
 $m \parallel l$ Conv Corr $\angle 's$ Post (3-2)

Q.E.D.

Example

Not in book – Find x so $l \parallel m$.

 \angle 's are alt int \angle 's.

Use Thm 3-1...

14 + 3x = 5x - 66 Alt int \angle 's \cong 80 = 2x Subtr & Add POE (+66, -3x both sides) 40 = x Div POE (\div 2 both sides)